dc.contributor.author | Pourdarbani, Razieh | |
dc.contributor.author | Sabzi, Sajad | |
dc.contributor.author | Hernández Hernández, Mario | |
dc.contributor.author | Hernández-Hernández, José Luis | |
dc.contributor.author | García_Mateos, Ginés | |
dc.contributor.author | Kalantari, Davood | |
dc.contributor.author | Molina Martínez, José Miguel | |
dc.creator | Pourdarbani, Razieh;#0000-0003-0766-8305 | |
dc.creator | Sabzi, Sajad;#0000-0003-2439-5329 | |
dc.creator | Hernández Hernández, Mario;#0000-0001-8330-4779 | |
dc.creator | Hernández-Hernández, José Luis;#0000-0003-0231-2019 | |
dc.creator | García_Mateos, Ginés;#0000-0003-2521-4454 | |
dc.creator | Kalantari, Davood;#0000-0002-4118-2918 | |
dc.creator | Molina Martínez, José Miguel;#0000-0001-8122-5487 | |
dc.date.accessioned | 2023-03-23T16:46:54Z | |
dc.date.available | 2023-03-23T16:46:54Z | |
dc.date.issued | 2019-10 | |
dc.identifier.issn | doi:10.3390/rs11212546 | |
dc.identifier.uri | http://ri.uagro.mx/handle/uagro/3531 | |
dc.description.abstract | Color segmentation is one of the most thoroughly studied problems in agricultural applications of remote image capture systems, since it is the key step in several different tasks, such as crop harvesting, site specific spraying, and targeted disease control under natural light. This paper studies and compares five methods to segment plum fruit images under ambient conditions at 12 different light intensities, and an ensemble method combining them. In these methods, several color features in different color spaces are first extracted for each pixel, and then the most e
ective features are selected using a hybrid approach of artificial neural networks and the cultural algorithm (ANN-CA). The features selected among the 38 defined channels were the b* channel of L*a*b*, and the color purity index, C*, from L*C*h. Next, fruit/background segmentation is performed using five classifiers: artificial neural network-imperialist competitive algorithm (ANN-ICA); hybrid artificial neural network-harmony search (ANN-HS); support vector machines (SVM); k nearest neighbors (kNN); and linear discriminant analysis (LDA). In the ensemble method, the final class for each pixel is determined using the majority voting method. The experiments showed that the correct classification rate for the majority voting method excluding LDA was 98.59%, outperforming the results of the constituent methods. | |
dc.format | pdf | |
dc.language.iso | eng | |
dc.publisher | Remote Sens | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0 | |
dc.subject | remote sensing in agriculture | |
dc.subject | artificial neural network hybridization | |
dc.subject | environmental conditions | |
dc.subject | majority voting | |
dc.subject | plum segmentation | |
dc.subject.classification | INGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ALIMENTOS | |
dc.title | Comparison of Different Classifiers and the Majority Voting Rule for the Detection of Plum Fruits in Garden Conditions. | |
dc.type | Artículo | |
dc.type.conacyt | article | |
dc.rights.acces | openAccess | |
dc.audience | generalPublic | |
dc.identificator | 7||33||3309 | |
dc.format.digitalOrigin | Born digital | |
dc.thesis.degreelevel | Doctorado | |
dc.thesis.degreename | Doctorado en Innovación y Cultura Digital | |
dc.thesis.degreegrantor | Universidad Autónoma de Guerrero | |
dc.thesis.degreedepartment | Facultad de Ingeniería | |
dc.thesis.degreediscipline | Ingeniería y Tecnología | |
dc.identifier.cvuagro | 11228 | |