Mostrar el registro sencillo del ítem

dc.contributor.authorAbbaspour_Gilandeh, Yousef
dc.contributor.authorFazeli, Masoud
dc.contributor.authorRoshanianfard, Ali
dc.contributor.authorHernández Hernández, Mario
dc.contributor.authorGallardo Bernal, Iván
dc.contributor.authorHernández-Hernández, José Luis
dc.creatorAbbaspour_Gilandeh, Yousef;#0000-0002-9999-7845
dc.creatorFazeli, Masoud;#0000-0001-7207-2757
dc.creatorRoshanianfard, Ali;#0000-0001-7823-4470
dc.creatorHernández Hernández, Mario;#0000-0001-8330-4779
dc.creatorGallardo Bernal, Iván;#0000-0002-1596-6786
dc.creatorHernández-Hernández, José Luis;#0000-0003-0231-2019
dc.date.accessioned2023-03-23T16:48:32Z
dc.date.available2023-03-23T16:48:32Z
dc.date.issued2020-02
dc.identifier.issndoi:10.3390/agronomy10040451
dc.identifier.urihttp://ri.uagro.mx/handle/uagro/3532
dc.description.abstractIn this study, artificial neural networks (ANNs) were used to predict the draft force of a rigid tine chisel cultivator. The factorial experiment based on the randomized complete block design (RCBD) was used to obtain the required data and to determine the factors affecting the draft force. The draft force of the chisel cultivator was measured using a three-point hitch dynamometer and data were collected using a DT800 datalogger. A recurrent back-propagation multilayer network was selected to predict the draft force of the cultivator. The gradient descent algorithm with momentum, Levenberg¿Marquardt algorithm, and scaled conjugate gradient descent algorithm were used for network training. The tangent sigmoid transfer function was the activation functions in the layers. The draft force was predicted based on the tillage depth, soil moisture content, soil cone index, and forward speed. The results showed that the developed ANNs with two hidden layers (24 and 26 neurons in the first and second layers, respectively) with the use of the scaled conjugate gradient descent algorithm outperformed the networks developed with other algorithms. The average simulation accuracy and the correlation coecient for the prediction of draft force of a chisel cultivator were 99.83% and 0.9445, respectively. The linear regression model had a much lower accuracy and correlation coecient for predicting the draft force compared to the ANNs.
dc.formatpdf
dc.language.isoeng
dc.publisherAgronomy
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectANNs
dc.subjectartificial intelligence
dc.subjectcultivator
dc.subjecttillage
dc.subjectweed
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ALIMENTOS
dc.titlePrediction of Draft Force of a Chisel Cultivator Using Artificial Neural Networks and Its Comparison with Regression Model.
dc.typeArtículo
dc.type.conacytarticle
dc.rights.accesopenAccess
dc.audiencegeneralPublic
dc.identificator7||33||3309
dc.format.digitalOriginBorn digital
dc.thesis.degreelevelDoctorado
dc.thesis.degreenameDoctorado en Innovación y Cultura Digital
dc.thesis.degreegrantorUniversidad Autónoma de Guerrero
dc.thesis.degreedepartmentFacultad de Ingeniería
dc.thesis.degreedisciplineIngeniería y Tecnología
dc.identifier.cvuagro11228


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc-nd/4.0