Mostrar el registro sencillo del ítem

dc.contributor.authorMirzazadeh, Ali
dc.contributor.authorAzizi, Afshin
dc.contributor.authorAbbaspour_Gilandeh, Yousef
dc.contributor.authorHernández-Hernández, José Luis
dc.contributor.authorHernández Hernández, Mario
dc.contributor.authorGallardo Bernal, Iván
dc.creatorMirzazadeh, Ali;#0000-0002-5690-7205
dc.creatorAzizi, Afshin;#0000-0001-9197-4967
dc.creatorAbbaspour_Gilandeh, Yousef;#0000-0002-9999-7845
dc.creatorHernández-Hernández, José Luis;#0000-0003-0231-2019
dc.creatorHernández Hernández, Mario;#0000-0001-8330-4779
dc.creatorGallardo Bernal, Iván;#0000-0002-1596-6786
dc.date.accessioned2023-03-23T16:46:41Z
dc.date.available2023-03-23T16:46:41Z
dc.date.issued2021-11
dc.identifier.issnhttps://doi.org/10.3390/agronomy11112364
dc.identifier.urihttp://ri.uagro.mx/handle/uagro/3530
dc.description.abstractEstimation of crop damage plays a vital role in the management of fields in the agricultura sector. An accurate measure of it provides key guidance to support agricultural decision-making systems. The objective of the study was to propose a novel technique for classifying damaged crops based on a state-of-the-art deep learning algorithm. To this end, a dataset of rapeseed field images was gathered from the field after birds¿ attacks. The dataset consisted of three classes including undamaged, partially damaged, and fully damaged crops. Vgg16 and Res-Net50 as pre-trained deep convolutional neural networks were used to classify these classes. The overall classification accuracy reached 93.7% and 98.2% for the Vgg16 and the ResNet50 algorithms, respectively. The results indicated that a deep neural network has a high ability in distinguishing and categorizing different image-based datasets of rapeseed. The findings also revealed a great potential of Deep learning-based models to classify other damaged crops.
dc.formatpdf
dc.language.isoeng
dc.publisherAgronomy
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectrapeseed
dc.subjectclassification
dc.subjectdamaged crops
dc.subjectdeep neural networks
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ALIMENTOS
dc.titleA Novel Technique for Classifying Bird Damage to Rapeseed Plants Based on a Deep Learning Algorithm.
dc.typeArtículo
dc.type.conacytarticle
dc.rights.accesopenAccess
dc.audiencegeneralPublic
dc.identificator7||33||3309
dc.format.digitalOriginBorn digital
dc.thesis.degreelevelDoctorado
dc.thesis.degreenameDoctorado en Innovación y Cultura Digital
dc.thesis.degreegrantorUniversidad Autónoma de Guerrero
dc.thesis.degreedepartmentFacultad de Ingeniería
dc.thesis.degreedisciplineIngeniería y Tecnología
dc.identifier.cvuagro11228


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc-nd/4.0