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Abstract

In this paper we present a general methodology to obtain a gen-
erating function for some multiple orthogonal polynomials of type I
with regular indices. In particular, we obtain an explicit generating
functions Px(t) :=

∑∞
n=0Q2n(x)tn and Ix(t) :=

∑∞
n=0Q2n+1(x)tn with

Qn(x) = qn,1(x) + x qn,2(x) where
(
qn,1(x), qn,2(x)

)
is the r-vector of

type I associated with the multiple orthogonal Hermite polynomial with
regular index for r = 2.
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1 Introduction

At present, interest in the study of multiple orthogonal polynomials has in-
creased due to the development of simultaneous rational approximation of
functions and the link between the two theories. Orthogonal polynomials and
Padé approximants are essential areas for research, because of its applications
in different branches of mathematics such as number theory, the problem of
moments, the analytic extension, interpolation problems, spectral theory of
operators and others.

Initial ideas of the theory of simultaneous approximation is found in the
works of Chebyshev and Markov. The construction of simultaneous rational
approximation was introduced by Hermite in 1873 during the demonstration of
the importance of the Euler number [5], so it is known by the name of Hermite-
Padé approximants (H-P). In [7] the author obtained generating functions for
the family of multiple orthogonal polynomials of Laguerre and Hermite of type
II from the Rodrigues formulae.

2 Hermite-Padé Approximants.

Let f = (f1, . . . , fr) be a set of r analytic functions in a neighborhood of
infinity,

fi(z) ≈
∑
n≥0

cn,i
zn+1

, with cn,i ∈ C and i = 1, . . . , r. (1)

One k-dimensional multi-index −→n is a (non-negative) integer vector −→n =
(n1, . . . , nk) for some k ∈ N∗. Denoted by n := ‖−→n ‖1 =

∑k
j=1 nj.

One way to extend the rational approximation of a function is through
formulation of the following classic problem.

Problem 1. Given a finite set of r analytic functions f1, . . . , fr in a neighbor-
hood of infinity and the multi-index −→n = (n1, . . . , nr), search a non null poly-
nomial Q−→n of degree not greater than n, and polynomials P(−→n ,1), . . . , P(−→n ,r),
such that for each j with j = 1, . . . , r we have that

Q−→n (z)fj(z)− P(−→n ,j)(z) = O

(
1

znj+1

)
. (2)
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It is known that this problem always has a solution, the homogeneous
system of linear equations determines the associated polynomial Q−→n , then
each equation determines P(−→n ,j). The Hermite-Padé approximants of type II
can be defined as follows.

Definition 2.1. Let
(
Q−→n , P(−→n ,1), . . . , P(−→n ,r)

)
be a solution of Problem 1.

The r-vector π−→n =
(
π(−→n ,1), . . . , π(−→n ,r)

)
of rational fractions of the following

form

π(−→n ,j)(z) =
P(−→n ,j)(z)

Q−→n (z)
, for every 1 ≤ j ≤ r, (3)

are called Hermite-Padé approximants of type II in the point z =∞ with
multi-index −→n = (n1, . . . , nr).

The existence of Hermite-Padé approximants of type II (solution of Prob-
lem 1) has been resolved. However, in general, the fractions {π(−→n ,i)(z)}ri=1

are not uniquely defined given the multi-index and the r analytic functions at
infinity, so it is useful to establish sufficient conditions to ensure uniqueness.

Definition 2.2. A multi-index −→n is called normal index for Problem 1, if
in every solution

(
Q−→n , P(−→n ,1), . . . , P(−→n ,r)

)
, the polynomial Q−→n (z) has a degree

of n.

If −→n is a normal index, then the uniqueness of the Hermite-Padé approxi-
mants is guaranteed. Another way to extend the rational approximation of a
function is given by the following problem.

Problem 2. Given a set of r analytic functions f1, . . . , fr in a neighborhood
of infinity and the multi-index −→n = (n1, . . . , nr), search for a r-vector of poly-
nomials (A−→n ,1, . . . , A−→n ,r), with A−→n ,j of degree not greater than nj − 1 and one
polynomial B−→n such that

r∑
j=1

A−→n ,j(z)fj(z)−B−→n (z) = O

(
1

zn

)
. (4)

In order to solve Problem 2, the associated homogeneous system of linear
equations that allows us to determine the polynomials A−→n ,j is solved and
subsequently is obtained B−→n . The Hermite-Padé approximants of type I can
be defined as follows.

Definition 2.3. Let (A−→n ,1, . . . , A−→n ,r, B−→n ) be a solution of Problem 2. The
linear combination with polynomial coefficients of the r functions

r∑
j=1

An,j(z)fj(z) ≈ Bn(z), (5)
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are called Hermite-Padé approximants of type I in the point z = ∞ with
multi-index −→n = (n1, . . . , nr).

Definition 2.4. A multi-index −→n = (n1, . . . , nr), is a normal index for the
Problem 2, if in any solution (A−→n ,1, . . . , A−→n ,r, B−→n ), the polynomial A−→n ,j(z) has
degree nj − 1.

The existence of Hermite-Padé approximants of type I (solution of Problem
2) is solved, but new conditions are needed to ensure uniqueness.

Multiple orthogonal polynomials of types I and II are directly related
to the Hermite-Padé approximants of types I and II, respectively, associ-
ated with r Markov’s functions 1. Also these fulfill interesting orthogonal-
ity conditions which satisfy each family of multiple orthogonal polynomials.
In this paper, we work with r Lebesgue measures µ1, . . . , µr with supports
supp(µ1), . . . , supp(µr), respectively, all of them formed by an infinite num-
ber of points contained in closed subsets E1, . . . , Er in the real axis (i.e.,
supp(µi) ⊂ Ei ⊂ R for 1 ≤ i ≤ r). If Ei is an unbounded set for 1 ≤ i ≤ r, it is
further assumed that xn ∈ L1[µi] for all n ∈ Z+. In an alternative way, working
with r weight functions w1, . . . , wr associated with the above measures.

Definition 2.5. A r-vector (A−→n ,1, . . . , A−→n ,r) is a multiple orthogonal poly-
nomial of type I associated to the weight functions w1, . . . , wr for the multi-
index −→n = (n1, . . . , nr), if each A−→n ,j has degree less than nj and the orthogo-
nality condition is satisfied

r∑
j=1

∫
Ej

xk A−→n ,j(x)wj(x) dx = 0 for k = 0, 1, . . . , n− 2. (6)

Definition 2.6 (Multiple orthogonal polynomial of type II). A polynomial
P−→n is a multiple orthogonal Polynomial of type II associated with the weight
function w1, . . . , wr for the multi-index −→n = (n1, . . . , nr), if has degree n and
the orthogonality conditions are satisfied

∫
Ej

P−→n (x)wj(x)xk dx = 0 for k = 0, 1, . . . , nj−1 with j = 1, . . . , r. (7)

There is a well known equivalence between determining multiple orthogonal
polynomials and Hermite-Padé approximants of types I and II, see [9, 10, 11].
To see how to generate the multiple orthogonal polynomials of types I and
II, and the associated polynomials of the second kind, see [2, 3, 4, 8, 10, 11].

1Markov’s functions are particular cases of functions satisfying (1). Depending on the
nature of the support of the measurement of the orthogonality problem associated also are
called Stieltjes functions
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Working with multi-index, in general way, in the study of multiple orthogonal
polynomials becomes quite cumbersome. In this direction we will work with a
regular multi-index.

Definition 2.7. A multi-index −→n = (n1, . . . , nr) is a regular index2 if for
1 ≤ i < j ≤ r we have 0 ≤ ni − nj ≤ 1.

This definition allows to associate for all n ∈ N an unique r-dimensional
regular index −→m such that n = ‖−→m‖1.

Definition 2.8. A system of analytic functions f1, . . . , fr is weakly perfect
if all regular indices are normal.

By assuming that the multi-indexes are regular we adopt the subscript
notation n (Xn) to denote the r-dimensional multi-index −→m which satisfies
‖−→m‖1 = n and will be denoted by ni to the i-th component of this multi-
index. In addition, we will work with families of classics multiple orthogonal
polynomials according to the classification in [1] given by weight functions
which are solution of the Pearson’s equation in Angelesco Systems and AT-
systems. We also assume the results in a weakly perfect system where multiple
orthogonal type II polynomials are monic.

Theorem 2.9 (Recurrence Formulae). Let {Pn(x)}∞n=0 be a family of multi-
ple orthogonal monic polynomials of type II associated to the Lebesgue measures
µ1, . . . , µr of regular index in a weakly perfect system. Then

xPn(x) = Pn+1(x) +
r∑
j=0

an,j Pn−j(x), n ≥ 0, (8)

with initial conditions P0(x) = 1 and P−k(x) = 0 for k = 1, . . . , r.

The proof of the Theorem 2.9 is obtained using (7) with the help of the
bilinear form (9), extended from the moments problem of orthogonal poly-
nomials which guarantees the existence of biorthogonal families {Pn}∞n=0 and
{Qn}∞n=0 according to (9) in weakly perfect systems.

〈
p(x), q(x)

〉
=

r∑
i=1

∫
Ei

p(x)qi(x)dµi(x) with q(x) =
r∑
i=1

xi−1qi(x
r). (9)

This bilinear form is well defined due to the existence and uniqueness of
the decomposition for q(x).

2regular index has the form
(

k+1,...,k+1
j times , k,...,k

r−j times

)
.
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Theorem 2.10. Let {(qn,1, . . . , qn,r)}∞n=0 be a family of r-vectors multiple or-
thonormal polynomials of type I associated to the Lebesgue measures µ1, . . . , µr
of regular index in a weakly perfect system. Then

xqn,i = qn−1,i +
r∑
j=0

an+j,j qn+j,i(x), for n ≥ 0 and i = 1, . . . , r, (10)

for the coefficients an,j used in Theorem 2.9.

The proof of Theorem 2.10 is obtained using (6) and using the bilinear
form (9). By the Theorem 2.10 a recurrence relation with r + 2 terms that
satisfy the family of polynomials {Qn}∞n=0.

xrQn(x) = Qn−1(x) +
r∑
j=0

an+j,jQn+j(x) for n ≥ 0, (11)

for the coefficients an,j used in the Theorem 2.9.
The decomposition of Qn in the n-th r-vector multiple orthogonal polyno-

mial of type I, we will call to the polynomials Qn(x) =
∑r

i=1 x
i−1qn,i(x

r) multi-
ple orthogonal polynomials of type I and to establish differences, (qn,1, . . . , qn,r)
will be referred by the expression r-vector multiple orthogonal of type I.

3 Generating function and multiple orthogo-

nal Hermite polynomials of type I.

The normality of the regular index is guaranteed for AT-systems and An-
gelesco systems, see [10]. In [10] the authors call family of classic multiple
orthogonal polynomials to three stated families for Angelesco systems (Jacobi-
Angelesco, Jacobi-Laguerre and Laguerre-Hermite) and four families in AT-
systems (multiple orthogonal Laguerre I, multiple orthogonal Laguerre II and
multiple orthogonal Hermite). Our work focuses, for example, on the family
multiple orthogonal Hermite polynomials; one of the four associated with the
AT-systems. For more information on the multiple orthogonal polynomials on
the real line; see, for instance, [1, 6, 10, 11].

Multiple orthogonal Hermite polynomials Hc
n, have support on the real

line (−∞,∞) and weight functions are given by {wj(x) = e−x
2+cjx}rj=1 for

different real numbers cj. Multiple orthogonal polynomials of Hermite for

r = 2 (H
(c1,c2)
n ) satisfy the orthogonality condition.

∫
R
H(c1,c2)
n (x) e−x

2+cix xkdx = 0 for k = 0, . . . , ni−1, and i = 1, 2. (12)
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On the orthogonality relation and the definition of their weight functions,
these families of polynomials can be obtained as the limit from the Jacobi-
Piñeiro, for the particular case r = 2 is as follows, see [10].

H(c1,c2)
n (x) = lim

α→∞
2(
√
α)nP (α,α+c1

√
α,α+c2

√
α)

n

(
x+
√
α

2
√
α

)
. (13)

From computations in [10] we can obtain:

a2n,0 =
c1
2
, a2n+1,0 =

c2
2
, an,1 =

n

2
, a2n,2 =

n(c1 − c2)
4

,

a2n+1,2 =
n(c2 − c1)

4
.

(14)

These results allow us to easily generate multiple orthogonal polynomi-
als of Hermite by their respective recurrence formulaes. Note that the re-
currence coefficients of same parity are given by identical expressions, which
suggests to take as generating functions to Px(t) =

∑∞
n=0Q2n(x)tn and Ix(t) =∑∞

n=0Q2n+1(x)tn.
Assuming that you are working with power series of t in a non-empty disc

of convergence D, so far undetermined; therefore Px(t) and Ix(t) are defined
correctly in D.

Theorem 3.1. Let {Qn}∞n=0 be a family of multiple orthogonal polynomials
of Hermite of type I associated with weight functions w1(x) = e−x

2+c1x and
w2(x) = e−x

2+c2x with c1 6= c2. Consider the generating functions Px(t) =∑∞
n=0Q2n(x)tn and Ix(t) =

∑∞
n=0Q2n+1(x)tn. Then, we have

Px(t) =
e−t(

1 + t
a2

) 1
4

{[(
Q0(x)− aQ1(x)

)(
aB +

1

4

)
f(t) +BtQ1(x)

]
sinh

(√
D/4

)
√
D/4

+Q0(x) cosh

(√
D

4

)
(15)

and

Ix(t) =
e−t(

1 + t
a2

) 1
4

{[
BQ0(x)−

(
aB +

1

4

)
Q1(x)

]

f(t)
sinh

(√
D/4

)
√
D/4

+Q1(x) cosh

(√
D

4

) .

(16)
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Proof. Let n be a fixed real number. Multiplying (10) by tn and then summing
these equations, separated by parity of n, we obtain (17) and (18). By uniform
convergence on every compact in D, the functions Px

′(t) and Ix
′(t) are well

defined on D.

c1 − c2
4

Px
′(t) + tIx

′(t) =
(
x2 − c1

2

)
Px(t)−

(
t+

1

2

)
Ix(t). (17)

Px
′(t)− c1 − c2

4
Ix
′(t) = −Px(t) +

(
x2 − c2

2

)
Ix(t). (18)

From these equations the following problem is obtained

 c1−c2
4

t

1 − c1−c2
4

 Px
′(t)

Ix
′(t)

 =

 x2 − c1
2

−
(
t+ 1

2

)
−1 x2 − c2

2

 Px(t)

Ix(t)

 ,

(19)

with

(
Px(0)
Ix(0)

)
=

(
Q0(x)
Q1(x)

)
.

We have (
−a −t
−1 a

) (
a t
1 −a

)
= −(t+ a2)

(
1 0
0 1

)
,

taking a = c1−c2
4

, b = x2 − c1
2

, c = x2 − c2
2

and B := a + b = c − a, we obtain
for t 6= −a2 the system of equations (19) is equivalent to the following Cauchy
problem.

 Px
′(t)

Ix
′(t)

 =
1

t+ a2

 −t+ ab Bt− a
2

B −t−
(
ac+ 1

2

)
 Px(t)

Ix(t)

 , (20)

with

(
Px(0)
Ix(0)

)
=

(
Q0(x)
Q1(x)

)
.

Since (20) is a system of homogeneous linear differential equations having
the form X ′ = A(t)X given X(0), its solution is given by the quadrature

formulas X = exp
(∫ t

0
A(τ)dτ

)
X(0). Note that the largest domain of (20) is

the open ball Ba2(0) with center at 0 and its radius a2 > 0. Besides,
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M =

∫ t

0

A(τ)dτ =


∫ t
0
ab−τ
τ+a2

dτ
∫ t
0

Bτ−a
2

τ+a2
dτ

∫ t
0

B
τ+a2

dτ −
∫ t
0

τ+ac− 1
2

τ+a2
dτ


=

 −t+ aBf(t) Bt− a
(
aB + 1

2

)
Bf(t) −t−

(
aB + 1

2

)
f(t)

 ,

where f(t) :=
∫ t
0

dτ
τ+a2

=
∑

n≥0
(−1)n
n+1

(
t
a2

)n+1
that is, f is a function of Markov

kind evaluated at −a2. Note that the function f(t) is strictly increasing in
−a2 < t < a2, nonnegative on 0 ≤ t < a2 with f(0) = 0 and f(a2) <∞.

In order to determine the explicit expression of the generating functions,
eM is calculated through the Jordan matrix of M .

PM(λ) = λ2−Tr(M)λ+det(M) = λ2−
(

2t+
f(t)

2

)
·λ+ t2−

(
B2 − 1

2

)
t f(t).

Therefore, the roots of PM(λ) (eigenvalues of M) are:

λi =
−2t− f(t)

2
+ (−1)i−1

2

√
f 2(t) + 16B2tf(t)

2
, for i = 1, 2. (21)

Denote by D to discriminant of PM(λ), i.e., D = f 2(t) + 16B2tf(t). As B
depend on x2 linearly and f(t) ≤ f(a2) < ∞ for −a2 < t ≤ a2, can be taken

sufficiently large values of x2 such that, if t 6= 0 we have f(t)
t

+ 16B2 > 0. In
this way we obtain λ1 6= λ2 for some domain of x.

To determine the associated eigenvector, the systems (M − λiI)Vi = 0 for
i = 1, 2 are solved, resulting in

V1,2 =

 (
aB + 1

4

)
f(t)±

√
D
4

Bf(t)

 ,

where
√
D represents the root which has positive real part to ensure con-

tinuity and differentiability. Then M = P

(
λ1 0
0 λ2

)
P−1, where

P =

 (
aB + 1

4

)
f(t) +

√
D
4

(
aB + 1

4

)
f(t)−

√
D
4

Bf(t) Bf(t)

 ,

and
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P−1 =
1

2B
√
D
4
f(t)

 Bf(t) −
(
aB + 1

4

)
f(t) +

√
D
4

Bf(t)
(
aB + 1

4

)
f(t) +

√
D
4

 .

Carrying out the matrix products to solve (20) we get

X =
e−t(

1 + t
a2

) 1
4


 (

aB + 1
4

)
f(t)

(
Bt− a

(
aB + 1

4

)
f(t)

)
Bf(t) −

(
aB + 1

4

)
f(t)


sinh

(√
D/4

)
√
D/4

+ I cosh

(√
D

4

)
 Q0(x)

Q1(x)

 (22)

Then verifying the initial conditions and getting the result is straightfor-
ward.

Proposition 1. The development of D in power series of t has convergency
radius a2.

Proof. Since f(−a2) = −∞, we have immediately that the convergency radius
of D is less than or equal to a2. Finally we have the result, as D is combination
of elementary functions of f and the radius of convergence of f is a2.

Proposition 2. Px(t) and Ix(t) as functions of t are analytic on the open ball
Ba2(0) centered at 0 with radius a2. In addition, both have a non-algebraic
singularity at t = −a2.

Proof. From Theorem 3.1, it can be verified that Px(t) and Ix(t) have an
algebraic singularity at t = −a2 due to the denominator of the first factor
and further has a non-algebraic singularity at the same point because of the
Markov function. Others possible singularities may arise due to the fraction
sinh(

√
D/4)√

D/4
, but we can see that it is not in this way. Note that

sinh
(√

D/4
)

√
D/4

=
∑
n≥0

(√
D/4

)2n
(2n+ 1)!

.

Therefore
sinh
(√

D/4
)

√
D/4

is analytic in the region where
√
D/4 is analytic too.

Finally, by Proposition 1, the proof is concluded.
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Conclusions

In this work, we present a general methodology to obtain a generating function
for some multiple orthogonal polynomials of type I with regular indices. The
methodology can be used on families of classical multiple orthogonal polyno-
mials in AT-systems for which the recurrence coefficients are known and their
expressions can be transformed in an appropriate way. For example, by an-
alyzing the structure of the expression of the families of multiple orthogonal
Laguerre polynomials I and II relative to the coefficients of recurrence. These
families should be natural candidates to apply the methodology in order to
obtain generating functions for its multiple orthogonal polynomials of type I.
In this direction, we invite the reader to develop the proposed idea.
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